Counterion distribution surrounding spherical nucleic acid-Au nanoparticle conjugates probed by small-angle x-ray scattering.

نویسندگان

  • Sumit Kewalramani
  • Jos W Zwanikken
  • Robert J Macfarlane
  • Cheuk-Yui Leung
  • Monica Olvera de la Cruz
  • Chad A Mirkin
  • Michael J Bedzyk
چکیده

The radial distribution of monovalent cations surrounding spherical nucleic acid-Au nanoparticle conjugates (SNA-AuNPs) is determined by in situ small-angle x-ray scattering (SAXS) and classical density functional theory (DFT) calculations. Small differences in SAXS intensity profiles from SNA-AuNPs dispersed in a series of solutions containing different monovalent ions (Na(+), K(+), Rb(+), or Cs(+)) are measured. Using the "heavy ion replacement" SAXS (HIRSAXS) approach, we extract the cation-distribution-dependent contribution to the SAXS intensity and show that it agrees with DFT predictions. The experiment-theory comparisons reveal the radial distribution of cations as well as the conformation of the DNA in the SNA shell. The analysis shows an enhancement to the average cation concentration in the SNA shell that can be up to 15-fold, depending on the bulk solution ionic concentration. The study demonstrates the feasibility of HIRSAXS in probing the distribution of monovalent cations surrounding nanoparticles with an electron dense core (e.g., metals).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Counterion distribution around DNA probed by solution X-ray scattering.

Counterion atmospheres condensed onto charged biopolymers strongly affect their physical properties and biological functions, but have been difficult to quantify experimentally. Here, monovalent and divalent counterion atmospheres around DNA double helices in solution are probed using small-angle x-ray scattering techniques. Modulation of the ion scattering factors by anomalous (resonant) x-ray...

متن کامل

Both helix topology and counterion distribution contribute to the more effective charge screening in dsRNA compared with dsDNA

The recent discovery of the RNA interference mechanism emphasizes the biological importance of short, isolated, double-stranded (ds) RNA helices and calls for a complete understanding of the biophysical properties of dsRNA. However, most previous studies of the electrostatics of nucleic acid duplexes have focused on DNA. Here, we present a comparative investigation of electrostatic effects in R...

متن کامل

Distribution Analysis of Nanoparticle Size by Small Angle X-ray Scattering

This article briefly introduces the fundamental principles of nanoparticle size distribution measurements using Small Angle X-ray Scattering, as well as data processing using the dividing distribution function. The study also investigates the existing methods of data processing. This article also discusses the testing of 2D, 3D nanostructure and Small Angle X-ray Scattering testing used in cosm...

متن کامل

Au Nanoparticle Loaded with 6-Thioguanine Anticancer Drug as a New Strategy for Drug Delivery

In this study we suggested a new strategy for drug delivery of 6-thioguanine (6-TG) as a cancer drug by loading of this thiolic drug at a surface of Au nanoparticles. For this goal, we synthesized Au nanoparticle (Au/NPs) by reduction of tetrachloroauric (III) acid solutions by sodium borohydride and characterized Au/NPs by X-ray powder diffraction (XRD), dynamic light scattering (DLS), Ultravi...

متن کامل

Changes in metal nanoparticle shape and size induced by swift heavy-ion irradiation

Changes in the shape and size of Co, Pt and Au nanoparticles induced by swift heavy-ion irradiation (SHII) have been characterized using a combination of transmission electron microscopy, small-angle x-ray scattering and x-ray absorption near-edge structure. Elemental nanoparticles of diameters 2-15 nm were first formed in amorphous SiO 2 by ion implantation and thermal annealing and then irrad...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS nano

دوره 7 12  شماره 

صفحات  -

تاریخ انتشار 2013